4,331 research outputs found

    Thermally induced 0-pi phase transition in Josephson junctions through a ferromagnetic oxide film

    Get PDF
    We investigate the Josephson transport through a ferromagnetic oxide film, e.g., La2_2BaCuO5_5, theoretically. Using the recursive Green's function technique, we found the formation of a pi-junction in such systems. Moreover the 0-pi phase transition is induced by increasing the temperature. Such ferromagnetic-oxide based Josephson junctions may become an element in the architecture of future quantum computers.Comment: 4 pages, 3 figure

    Effect of d-f hybridization on the Josephson current through Eu-chalcogenides

    Full text link
    A superconducting ring with a pi junction made from superconductor/ferromagnetic-metal/superconductor (S-FM-S) exhibits a spontaneous current without an external magnetic field in the ground state. Such pi ring provides so-called quiet qubit that can be efficiently decoupled from the fluctuation of the external field. However, the usage of the FM gives rise to strong Ohmic dissipation. Therefore, the realization of pi junctions without FM is expected for qubit applications. We theoretically consider the possibility of the pi coupling for S/Eu-chalcogenides/S junctions based on the d-f Hamiltonian. By use of the Green's function method we found that pi junction can be formed in the case of the finite d-f hybridization between the conduction d and the localized f electrons.Comment: 4 pages, 4 figure

    Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions

    Full text link
    We theoretically study classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC circuit. The TA and MQT escape rate are calculated by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling leads to the slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson junctions.Comment: 9 pages, 2 figure

    Macroscopic quantum dynamics of pi-junctions with ferromagnetic insulators

    Get PDF
    We theoretically investigate the macroscopic quantum dynamics of a pi junction with a superconductor (S) and a multiferroic material or a ferromagnetic insulator (FI). By deriving the effective action from a microscopic Hamiltonian, a pi-junction qubit (a S-FI-S superconducting quantum interference device ring) is proposed. In this qubit, a quantum two-level system is spontaneously generated and the effect of the quasiparticle dissipation is found to be very weak. These features make it possible to realize a quiet qubit with high coherency. We also investigate macroscopic quantum tunneling (MQT) in current-biased S-FI-S pi junctions and show that the influence of the quasiparticle dissipation on MQT is negligibly small.Comment: 4 pages, 2 figure

    Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions

    Full text link
    We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson junctions made of high-T_c superconductors in order to clarify the influence of the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the MQT rate on the twist angle γ\gamma about the c-axis is calculated by using the functional integral and the bounce method. Due to the d-wave OPS, the γ\gamma dependence of standard deviation of the switching current distribution and the crossover temperature from thermal activation to MQT are found to be given by cos2γ\cos2\gamma and cos2γ\sqrt{\cos2\gamma}, respectively. We also show that a dissipative effect resulting from the nodal quasiparticle excitation on MQT is negligibly small, which is consistent with recent MQT experiments using Bi2{}_2Sr2{}_2CaCu2{}_2O8+δ{}_{8 + \delta} intrinsic junctions. These results indicate that MQT in c-axis twist junctions becomes a useful experimental tool for testing the OPS of high-T_c materials at low temperature, and suggest high potential of such junctions for qubit applications.Comment: 15 pages, 8 figures, 1 tabl

    Theory of two-dimensional macroscopic quantum tunneling in a Josephson junction coupled with an LC circuit

    Full text link
    We investigate classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a Josephson junction coupled with an LC circuit theoretically. The TA and MQT escape rate are calculated analytically by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling gives rise to slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in grain boundary YBCO Josephson junctions.Comment: 4 pages, 1 figure, Proceedings of LT2

    Recent Developments in Parallelization of the Multidimensional Integration Package DICE

    Full text link
    DICE is a general purpose multidimensional numerical integration package. There can be two ways in the parallelization of DICE, "distributing random numbers into workers" and "distributing hypercubes into workers". Furthermore, there can be the combination of both ways. So far, we had developed the parallelization code using the former way and reported it in ACAT2002 in Moscow. Here, we will present the recent developments of parallelized DICE in the latter way as the 2nd stage of our parallelization activities.Comment: 5 pages, 2 figures, Talk given at the X International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2005, DESY-Zeuthen, Germany, 22-27 May 200

    Tunneling Hamiltonian description of the atomic-scale 0-pi transition in superconductor/ferromagnetic-insulator junctions

    Full text link
    We show a perturbation theory of the Josephson transport through ferromagnetic insulators (FIs). Recently we have found that the appearance of the atomic scale 0-pi transition in such junctions based on numerical calculations. In order to explore the mechanism of this anomalous transition, we have analytically calculated the Josephson current using the tunneling Hamiltonian theory and found that the spin dependent pi-phase shift in the FI barrier gives the atomic scale 0-pi transition.Comment: 4 pages, 1 figure, to appear in Physica
    corecore